Decommissioning Makerbot Cupcake

This was the first 3D printer I ever had

wp_20170215_010-2

This picture shows the machine after its last Frankenstein operation circa 2011.  I purchased it as a kit in the first place so that I could ultimately create some simple objects like this: http://www.thingiverse.com/thing:11255 to connect drinking straws so that my daughter and I could construct objects like geodesic domes.

Well, this machine never printed more than one or two objects in it wacky storied life until it was replaced with the original Up! machine, which just worked out of the box.

Those were heady days in the 3D printing industry.  RepRap, and the notion of printers printing parts for themselves was still an ideal, and the likes of Ultimaker, Zortrax, and even Prusa, were just glimmers in their creators eyes.

The hotend for this thing (that mass of acrylic and steel sitting on the 5″x5″ platform in the middle there, probably weighed nearly a pound, consumed 3mm plastic, and just didn’t really work.

wp_20170220_026

All those nuts and bolts, tons of acrylic, funky resistors, an even a piece of delrin.  It was all well intentioned, and all very experiemental, and it all just didn’t quite work for me.  Compared to a new modern extruder/hotend combo, this might seem relatively stone age, but it did have all the basics that we take for granite today.

I’m happy we built this machine.  It was a great bonding experience, and it was then that my daughter and I cemented ourselves as ‘makers’.  We went to a MakerFaire, played with electronics, sewed leds into a dress, and generally carried ourselves into the modern age of making.

I have since purchased an original Up!, an early prusa mendel, original ultimaker.  Then I jumped into another realm with a ZCorp 650, ZCorp 660, then back down to earth with an Afinia Up Box, and lately Type A Machines Hub, and Prusa i3 MK2.  That’s a lot of plastic, powder, glue and frustration right there in all that madness.

I purchased the first kit to make a little something for me and the daughter to play with.  I’ve since explored the various ways in which these devices may or may not be utilized in the real of custom on-demand manufacturing.  That journey continues.

This cupcake was both fun and frustrating as all heck.  I’m a bit nostalgic to see it go, but now that it’s real value is in the various M3 screws and nuts, I’m happy to have let this particular nightmare in our printing history go.

RIP cupcake.  You served us well.

 


Home Automation – Choosing Bulbs

With a New Year’s resolution to replace all incandescent bulbs in the house with LEDs, I actually started the process back in December.  I purchased a ton of these:

Sylvania Ultra LED Light Bulb

These bulbs were already cheap at the local Lowe’s Home Improvement store.  But, for Christmas, they were $2.20 each!  Well, I only needed 7 more to finish up the job I started, in terms of flood light replacement, so I got them.  At this rate, they’re cheaper than incandescents, by a long shot, so why not?

For my particular house, the vast majority of bulbs in common areas, are these floods, so replacing them all will make us feel good about the environment.

In most cases, these bulbs are in sets of at least three or more, so there’s a question of the light switch that goes with them.  In two cases, the family room and kitchen, there are mechanical dimmer switches.  Those are older Lutron dimmers, which were good for the older floods, but not tuned to the all new LED floods just installed.  They work, but in a kind of clunky way.  When you dim really low, the lights might start to flicker, becoming unbearable to be under.  So, some new dimmers are required.

There’s a whole story on dimmers waiting to be written, but there are basically two ways to go.  Either stick with another simple mechanical dimmer, with no automation capability, but at least LED savvy, or go with an automation capable dimmer.

This is as much a cost concern as anything.  I went with both depending.

lutroncfldimmer

This is a typical mechanical dimmer.  I chose Lutron models that are pretty much the same as the old ones, except they handle CFLs and LEDs much better.  This is a good choice when you’re not going to do any automation in the area, you just want to slap that switch on or off when you enter and exit the room, simple and sweet.  So, in my kitchen nook, which has 3 lights, I put this one in.  I also put it in for the 9 lights in the kitchen, but after some thought, I decided I want to do some automation for the kitchen, so I need an automatable switch instead.

lutronautodimmer

In this case, it’s a dimmer that works with the Lutron Caseta automation system.  There are myriad automation systems from all sorts of companies.  I went with Lutron because that’s what was already in the house previously, and I’ve known the name for at least 40 years, and the reviews on them seem to be fairly decent, and they work with the Alexa thing.

These are great because they work with the LEDs, they’re automatable, and you can still just use them locally by pushing the buttons for brighter, dimmer, on, off.

So, that covers most of the lights.  But what about all those others, like the bathrooms, bedrooms, entry way, porch, etc?

Well, in most cases, you can just replace a typical 60 watt bulb with the equivalent 9-11w LED equivalent.  Choosing a color temperature (2700 – 3000K probably the best).  These can still work with standard light switches, so nothing more to be done.  Probably not worth installing a $50 automated dimmer on each one of these lights, but you could if you wanted to.

Now, there are some spots where you actually want to do a little something with color.  In my house, perhaps on the balcony (3 lights), or a play room, or prayer nook.  In these cases, you can install something like the Philips Hue.

huecolor

This is a bulb that is individually addressable.  It requires yet another Hub device, this time from Philips.  What you get though is the ability to set the color to a wide range of colors, as well as the general dimness.  You can set scenes, and if you want to write a little code, you can even hook up a Raspberry Pi to change the color to match the natural daylight.

At $50 a bulb, this is a very spendy option ranking up there with the choice between mechanical and automation ready dimmer switches.  In this case, you get the automation without having to install an automation dimmer, but you pay the automation cost for every single light you buy.  So, for my balcony, it would cost $150 for three lights, or I could go the standard LED and dimmer route for more like $60, assuming I already have the appropriate hub in either case.  What you lose with the standard bulb/dimmer approach is the ability to change the color.  For my balcony, I don’t need to change the color.

So, these automated colored lights make more sense for something like a bathroom, or an office space, or somewhere else where you spend time and care about what the lighting color is doing.

And there you have it.  No matter what you choose, they MUST be LEDs.  At least that’s the mantra of this day.  then you are free to choose a mix of automated dimmers/switches, and automated color changing lights.  In the future, for new homes, all the lighting will be LED at least, because it’s becoming the cheaper choice for builders.  For higher end homes, I’d expect there to be hubs, with automated dimmers and colored lights as a standard set of choices the homeowner can choose, just like carpet, paint color, and cabinetry.

 

 

 


Building a Tower PC – The Furniture

This is what home computing should look like…

WP_20161215_001.jpg

Reminiscent of a Memorex commercial (for those who can remember that iconic commercial with the fellow sitting in his lounger and being blown away).

There’s no point in building out a kick ass liquid cooled blinky light PC if you’re not going to show off your work.  So, I got to thinking about the piece of furniture that was going to showcase the build, and I came up with this design.  It’s built out of 2×4 lumber and MDF, because that’s the stock I had in the garage, and I needed to get rid of it to make room for more…

My design goal was a workbench like thing whose sole purpose would be to act as a computer work table/cabinet thing.  I don’t need a ton of drawers, I can simply stack plastic bins in there, or outside, if I feel I really need them.  I wanted an ample keyboard/mouse surface, because sometimes I need to place another laptop on the surface, or write stuff, and it’s nice to have the room to just push the keyboard back and use the worktop as a worktop.

I started out with a fairly standard looking garage workbench carcass.

WP_20161213_007.jpg

I put that power strip in there because it’s totally hidden when the workbench top is on, and it provides enough outlets, spaced far enough apart, that I can plug in the computer, 2 or three monitors, extra lights, speakers, and other stuff that might so happen to be sitting on the work top.

The thing is roughly 36″ on a side, with the worktop being 36″x33″ if memory serves correctly.

WP_20161215_008.jpg

This is in my ‘home office’ room, so there is carpet.  I had the dilemma of how to cart the thing around, because fully loaded, it’s quite heavy, and unwieldy.  I had a package of those furniture moving pads in a drawer, so I whipped those out, and they work a treat!  Each pad has a vinyl plate bottom, with a rubber top.  The 2×4 lumber sits nicely in the rubber, and I can easily move this thing all over my office all by myself.

With the demands of family, this took roughly two days to assemble.  Now that it all works, I can think about actually finishing it.  The things I want to do are to make it more like furniture, and less like something you’d find in the garage.  That means, doing some sanding, mahogany staining, varnish, and the like.  I’ll top the 3/4″ MDF top with an 1/8″ piece of hard board, and put some trim around the edge, to act as a buffer, and to hide the seam between the hardboard and MDF.  This makes for a nice durable surface that I can tape paper to every once in a while if I so happen to do any gluing or other craft work.

I’ve added the speaker system to the workbench, but right now it’s just kind of there, with the wires hanging all over.  I’ll have to drill a couple of circular holes for wire pass through.  To further make it kid proof, I’ll add some plexiglass siding, to keep their delicate little fingers out of the silently whirring fans.

Putting the computer in the corner as it is, is a pretty good thing.  It’s not taking up main floor space like the desk I was using.  That gives me a ton of space to do other stuff, like setup a mini 3D printer farm.  There’s a corner over by the window ready for exactly that.

In a fit of inspiration, I also removed the couch and chairs, which more often than not were collection places for junk.  Now I have an entirely open wall, ready for yet another workbench something or other.  Oddly enough, the wall on that side of the room is totally bare, and would be a perfect place to receive a 150″ micro projected image, as a large book case is on the opposite wall.  Perhaps that would be good for video conferencing in the large?

At any rate, the killer PC is getting a custom built piece of furniture.  I’m getting a new perspective on my home work space, and life is grand.


Building a Tower PC – one month on

The tower PC has found itself sidled up next to the desk in my office.  It’s not actually the best placement of the beast as you can’t really admire the innards from that position.  It’s really cool though because it’s fairly silent, causing a faint rumbling in the floor from the cooling reservoir.  You don’t really notice it until you turn it off.

As this thing is fairly quiet, even the occasional click click noise of the disk actual spinning rust disk drive becomes noticeable, and slightly annoying.  So, I decided to make my first mod to this beast.  I took out the Western digital 2TB drive, and put in a Samsung SSD 850 EVO 1TB.  There are a couple reasons for this replacement.  SSD drives are great for speed and silent, and low energy usage.  All good things.  They’re still a bit spendy though.  The 2TB version would have been twice as much, and then some.  So, 1TB is fine for now, as this machine is not intended to be a storage power house, just enough to handle local stuff fairly fast.

It may not seem like much of a change, but how has it worked out?  Well, when I had the spinning rust in there, I put all my repos on the D: drive, so downloading things from GitHub had a noticeable lag.  So too, compiling stuff with Visual Studio felt a bit sluggish.  My thinking was, why on earth would my laptop (all SSD all the time) be much faster at fairly simple compilation tasks, when this desktop beast is so much more powerful.  We’ll, I’ve just done a totally subjective test of compilation after installing the SSD and putting my repos on it.  Conclusion:  The snappiness level now meets my expectations.  I conclude that SSDs truly are a beneficial thing.

Now that I’ve got the snappy beast humming along, I’ll need to reconfigure my home office, build some new worktops, so that I can better display it, and have a much better work surface than my currently crowded desk.  One thing leads to another…


3D Printer – Prusa i3 MK2, first impressions

wp_20161115_002

I wasn’t really looking for a new 3D printer, the Afinia H800 in the garage has been doing duty for the past year, and it’s been fine.  I have generally liked the Up! printers over the past few years, primarily for their ease of use as it relates to support material removal.  I recently took a look at a couple of reviews of this latest Prusa i3 MK2.  Prusa is a well known name in the RepRap community, and I built an earlier version of a Prusa machine, before he actually created a company for them.  That earliest experience (circa 2011) was very raw, and typical of the machines of that day, it wasn’t that great compared to the Up! of that day.

This new one caught my eye for a few reasons.  Number one is the auto bed leveling.  It has this probe thing checks 9 spots on the bed for distance and whatnot.  It does this check before every print, so it stays accurate no matter what.  Then there’s this ‘live z adjust’, which essentially is a micro adjustment that tells the distance from the probe tip to the tip of the hot end.  This allows you to really find tune the first layer of filament as it’s being deposited on the bed.  That’s really great.  It makes height adjustment really easy, as compared to trying to slide a piece of paper under the nozzle, and doing mechanical height adjustments while you do it.

There are two things about the bed that make it especially nice.  First is that the bed itself is the heated element.  There’s not a separate heating element and then the bed.  The bed is the heater.  The bed is covered with this PEI material, which seems to be better than build tak, which I use in the Afinia machine.  So far, I guess it works.  If you really need to get super sticky, you can use a glue stick, for printing PETG or Nylon I guess.  Haven’t done that yet.  After Z height adjustment, I have found that PLA sticks just fine.  I did notice curling at the edges on a few prints though.  I’ll micro adjust some more, and it should be fine.

I purchased the pre-assembled machine.  I noticed right out of the box there was a slight problem.

wp_20161112_001

Those 4 zip ties are meant to be holding the linear bearings in tight to the orange carriage.  In my case, all six of them (4 on the top bearings, 2 on the bottom) were broken.  At first I thought “oh, exercise for the reader, I’m supposed to put this final bit together”, but no, they were just broken, and needed to be replaced.  The box comes from the Czech republic, so somewhere along the line, this carriage must have really been tweeked to put enough pressure on these ties to cause them to break.  No matter though.  I had some zip ties left over from the PC build, so I was able to repair and replace.  I did not notice anything else out of whack, so I went ahead and started printing.

One of the other reasons I went with this printer is the supposed support in Windows 10s 3D Builder application.  I haven’t actually gotten that to work yet, but I should be able to print directly from whithin Windows without requiring any additional software.  That will be nice, as then I can stay within the sweetness of that Windows app.

Other than the broken ties, this machine is a good basis for playing around with a lot of stuff.  Filament loading and ejection is nice and easy, and Prusa now has a multi-color option they’re experimenting with.

At roughly $900 shipped, this printer might make for a good solid inexpensive and reliable option to build a print farm of perhaps 6 printers.  At this price, I could put together 6 printers for roughly the price of a single Type-A machines printer ($5,000).  That would give tremendous print capacity, and a solid high quality no-nonsense printer to boot.

We’ll see.


Building a Tower PC – Final assembly

Well, it’s finally done

wp_20161107_009

I began this journey with creating the excuses for doing the build in the first place, and then purchasing the various parts.


Building a tower PC – 2016


Building a Tower PC – 2016, part 1

Now here is the fully assembled thing.  Some final thoughts.  The scariest part was doing the water cooling piping.  I practiced tube bending on a waste piece before embarking on the final pieces.  Like a plumber, it’s helpful to plan out where the pipes are going, do some measurements, then do bending on cutting.  Really I was afraid that once it got assembled, it would be springing leaks all over the place ruining the fairly expensive electronics.  When I first put the tubing together, I tested by running some distilled water through the system to flush things out.

In the end, there were no leaks, and everything runs beautifully, and cool.  Having done this once now, I can see redoing the tubing at some point to make it more fancy, but for now, it works just fine, and looks cool.

One thing of note, this thing is really quiet.  You literally need to almost stick your ear into the various fans to hear them at all.  The power supply fan is dead quiet.  This is dramatically different than the power supply on my shuttle PC, which I thought was fairly quiet.  Now the Shuttle PC sounds like a jet engine in comparison.

wp_20161107_012

The fans on the cooling radiator are whisper quiet as well, and provide those cool lighting effects to boot.  Really this thing shows off best in a fairly dark room where the various glowing light effects can be seen.

The noisiest part of the entire build is actually the disk drive.  You wouldn’t normally think of that, but when things are absolutely silent, to the point where the AC fan in a room is way louder, in a quiet room, the steady rumble of the disk drive is the most notable sound.

I’m loving it so far.  I feel a sense of accomplishment in putting it together.  I got to use it as a visual aid for the latest cohort of the LEAP class.  Having a transparent case makes it easy to point at stuff, and the liquid cooling just adds a nice wow factor.

As far as the OS is concerned, I installed Windows 10 Pro.  I figure even if I want to run Linux, I can simply use Hyper-V to create Linux VMs and go that way.  Given that the graphics card can run 4 monitors at a time (I think), that’s more than enough to give me the illusion of a common desktop, with two Windows screens, and a third with Linux on a VM.  So, it’s a sweet combo.

As for the excuse to be able to run the Vulkan API on a modern graphics board, that’s coming along.  I had to install Visual Studio, build a LuaJIT, and dust off the cobwebs of my Vulkan ffi binding.  All in due time.  For now, the screaming machine is being used to type this blog post, and otherwise sitting beside my desk looking cool.  I’ll have to design a desk specifically for it just to add to the DIY nature of the thing.


Building a Tower PC – 2016, part 1

Last time around, I outlined what would go into my build.  This time, I’ve actually placed the order for the parts.  I was originally going to place with newegg, but the motherboard was out of stock.  This forced me to consider amazon instead.  Amazon had everything, and at fairly decent prices.  That plus prime shipping, and good return policy, made it a relative no brainer (sorry newegg).

I did a hand wave on some of the parts in the last post, so I’ll round out the inventory in detail here.

RAM 

this item used to require a ton of thought in the past, but today, you can spit in generally the right direction and things will likely work out.  I wanted to outfit my rig with 64GB total ram.  I wanted RAM that was reliable and looked good.  I probably should have gone for some red colored stuff, but I went with the black G.SKILL Ripjaws V Series DDR4 PC4-25600 3200MHz parts (model F4-3200C16D-32GVK).

Image result for g.skill 32gb (2 x 16gb) ripjaws v series ddr4 pc4-25600

They come in sets of two (32GB per set), so I ordered two sets.  Who knows, maybe I’ll get lucky and they’ll be red.

SSD Storage

I know from my laptop, and my current Shuttle PC that having a SSD as your primary OS drive is an absolute must these days.  Please, no 5400 RPM spinning rust!  On this item, I chose the Samsung V-NAND SSD 950 Pro M.2 NVM Express 256 GB.

Image result for samsung 950 pro series - 256gb pcie nvme
What’s this NVMe thing anyway?  Well, turns out that flash disks are way faster than spinning rust (go figure), and yet we’ve been constrained to the spinning rust interfaces and data transfers of old for quite some time.  NVME represents a different interface to the flash memory, going way beyond what Sata can provide.  Luckily, the chosen motherboard supports this interface, so I should be able to boot up from this super fast thing.  I probably should have gone for the 512GB version, but things being the way they are, I can probably install a much larger 1TB version in 3 year’s time for the same price.  This will be more than good enough for now, and for the forseeable future.
Mass Storage
I did get some spinning rust to go in the box as well.  Western Digital Black 2TB – WD2003FZEX (7200 RPM SATA 6 Gb/s).
Image result for wd2003fzex
I have a pair of these spinning away in my Synology NAS, and they haven’t failed in the past 4 years, so I think I’m good with this.  I could have gone with a bigger size, like 6TB, but I’m thinking why put so much storage on a single disk.  Better to spread the load across several disks.  As long as I’m spreading the load across several disks, why not just use a giant NAS with an optical link, or 10Gbit ethernet or something.  As this machine is going to find multiple uses with multiple OSes, I didn’t feel the need to make it a storage monster.  Rather, it is a show piece, workstation with decent performance.  More specialization can come through additional equipment outside the box.
I have yet to consider my cooling options.  When the boxes arrive, I’ll assemble once just to make sure all the parts work.  I’ve been eyeing some cool looking Thermaltake liquid cooling gear.  I’m considering the whole reservoir/pump/tubing thing.  It looks cool, and there are ready made kits that look fairly easy to assemble.  The open case I’ve chosen just begs to be mod’d with the liquid cooling stuff.
At any rate, boxes should arrive in a week.  I took advantage of the Amazon offer to get $5.99 gift certificates towards using their pantry service instead of getting next day delivery.  How crazy is that!  I figure I won’t be able to assemble until next week anyway, so why not get some free stuff from Amazon in payment for my patience.
Having this kit arrive will be an incentive to further clean up my office (man cave) so that I’ll have enough desk and floor space to spread things out, take pictures, and assemble without losing any of the pieces.